198 research outputs found

    miR-17–92 cluster: ups and downs in cancer and aging

    Get PDF
    The miR-17–92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17–92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17–92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans

    MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer

    Get PDF
    Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. The role of the von-Hippel-Lindeau (VHL) tumour suppressor gene is well established in RCC with a loss of VHL protein leading to accumulated hypoxia-induced factor (HIF) and the subsequent transcriptional activation of multiple downstream targets. Recently, microRNAs (miRNAs) have been shown to be differentially expressed in RCC and their role in RCC pathogenesis is emerging. This month, in BMC Medicine, Gleadle and colleagues show that certain miRNAs are regulated by VHL in either a hypoxia-inducible factor (HIF)-dependent or HIF-independent manner in RCC. They also show that miRNA expression correlates with the survival of RCC patients

    Comprehensive analysis of human microRNA target networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p

    A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator

    Get PDF
    BACKGROUND: The MYC transcription factors are known to be involved in the biology of many human cancer types. But little is known about the Myc/microRNAs cooperation in the regulation of genes at the transcriptional and post-transcriptional level. METHODOLOGY/PRINCIPAL FINDINGS: Employing independent databases with experimentally validated data, we identified several mixed microRNA/Transcription Factor Feed-Forward Loops regulated by Myc and characterized completely by experimentally supported regulatory interactions, in human. We then studied the statistical and functional properties of these circuits and discussed in more detail a few interesting examples involving E2F1, PTEN, RB1 and VEGF. CONCLUSIONS/SIGNIFICANCE: We have assembled and characterized a catalogue of human mixed Transcription Factor/microRNA Feed-Forward Loops, having Myc as master regulator and completely defined by experimentally verified regulatory interactions

    MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome

    Get PDF
    Sézary syndrome (SS) is an incurable leukemic variant of cutaneous T-cell lymphoma and its pathogenesis is still unknown. Diagnosis/prognosis may strongly ameliorate the management of SS individuals. Here, we profiled the expression of 470 microRNAs (miRNAs) in a cohort of 22 SS patients, and we identified 45 miRNAs differentially expressed between SS and controls. Using predictive analysis, a list of 19 miRNAs, including miR-21, miR-214, miR-486, miR-18a, miR-342, miR-31 and let-7 members were also found. Moreover, we defined a signature of 14 miRNAs including again miR-21, potentially able to discriminate patients with unfavorable and favorable outcome. We validated our data for miR-21, miR-214 and miR-486 by qRT-PCR, including an additional set of array-independent SS cases. In addition, we also provide an in vitro evidence for a contribution of miR-214, miR-486 and miR-21 to apoptotic resistance of CTCL cell line

    Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are endogenously expressed regulatory noncoding RNAs. Previous studies have shown altered expression levels of several microRNAs in renal cell carcinoma.</p> <p>Methods</p> <p>We examined the expression levels of selected microRNAs in 38 samples of conventional renal cell carcinoma (RCC) and 10 samples of non-tumoral renal parenchyma using TaqMan real-time PCR method.</p> <p>Results</p> <p>The expression levels of miRNA-155 (p < 0.0001), miRNA-210 (p < 0.0001), miRNA-106a (p < 0.0001) and miRNA-106b (p < 0.0001) were significantly over-expressed in tumor tissue, whereas the expression of miRNA-141 (p < 0.0001) and miRNA-200c (p < 0.0001) were significantly decreased in RCC samples. There were no significant differences between expression levels of miRNA-182 and miRNA-200b in tumor samples and renal parenchyma. Our data suggest that expression levels of miRNA-106b are significantly lower in tumors of patients who developed metastasis (p = 0.030) and miR-106b is a potential predictive marker of early metastasis after nephrectomy in RCC patients (long-rank p = 0.032).</p> <p>Conclusions</p> <p>We have confirmed previous observations obtained by miRNA microarray analysis using standardized real-time PCR method. For the first time, we have identified a prognostic significance of miRNA-106b, which, after validation on a larger group of patients, maybe useful as a promising biomarker in patients with RCC.</p

    Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis

    Get PDF
    Activation of the unfolded protein response sensor PKR-like endoplasmic reticulum kinase (Perk) attenuates endoplasmic reticulum (ER) stress levels. Conversantly, if the damage is too severe and ER function cannot be restored, this signaling branch triggers apoptosis. Bcl-2 homology 3-only family member Bim is essential for ER stress-induced apoptosis. However, the regulatory mechanisms controlling Bim activation under ER stress conditions are not well understood. Here, we show that downregulation of the miR-106b-25 cluster contributes to ER stress-induced apoptosis and the upregulation of Bim. Hypericin-mediated photo-oxidative ER damage induced Perk-dependent cell death and led to a significant decrease in the levels of miRNAs belonging to miR-106b-25 cluster in wild-type (WT) but not in Perk−/− MEFs. Further, we show that expression of miR-106b-25 and Mcm-7 (host gene of miR-106b-25) is co-regulated through the transcription factors Atf4 (activating transcription factor 4) and Nrf2 (nuclear factor-erythroid-2-related factor 2). ER stress increased the activity of WT Bim 3′UTR (untranslated region) construct but not the miR-106b-25 recognition site-mutated Bim 3′UTR construct. Overexpression of miR-106b-25 cluster inhibits ER stress-induced cell death in WT but did not confer any further protection in Bim-knockdown cells. Further, we show downregulation in the levels of miR-106b-25 cluster in the symptomatic SOD1G86R transgenic mice. Our results suggest a molecular mechanism whereby repression of miR-106b-25 cluster has an important role in ER stress-mediated increase in Bim and apoptosis

    Identification of Serum MicroRNAs as Novel Non-Invasive Biomarkers for Early Detection of Gastric Cancer

    Get PDF
    BACKGROUND: To investigate the potential of serum miRNAs as biomarkers for early detection of gastric cancer (GC), a population-based study was conducted in Linqu, a high-risk area of GC in China. METHODOLOGY/PRINCIPAL FINDINGS: All subjects were selected from two large cohort studies. Differential miRNAs were identified in serum pools of GC and control using TaqMan low density array, and validated in individual from 82 pairs of GC and control, and 46 pairs of dysplasia and control by real-time quantitative reverse transcription-polymerase chain reaction. The temporal trends of identified serum miRNA expression were further explored in a retrospective study on 58 GC patients who had at least one pre-GC diagnosis serum sample based on the long-term follow-up population. The miRNA profiling results demonstrated that 16 miRNAs were markedly upregulated in GC patients compared to controls. Further validation identified a panel of three serum miRNAs (miR-221, miR-744, and miR-376c) as potential biomarkers for GC detection, and receiver operating characteristic (ROC) curve-based risk assessment analysis revealed that this panel could distinguish GCs from controls with 82.4% sensitivity and 58.8% specificity. MiR-221 and miR-376c demonstrated significantly positive correlation with poor differentiation of GC, and miR-221 displayed higher level in dysplasia than in control. Furthermore, the retrospective study revealed an increasing trend of these three miRNA levels during GC development (P for trend<0.05), and this panel could classify serum samples collected up to 5 years ahead of clinical GC diagnosis with 79.3% overall accuracy. CONCLUSIONS/SIGNIFICANCE: These data suggest that serum miR-221, miR-376c and miR-744 have strong potential as novel non-invasive biomarkers for early detection of GC

    The Negative Feedback-Loop between the Oncomir Mir-24-1 and Menin Modulates the Men1 Tumorigenesis by Mimicking the “Knudson’s Second Hit”

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson’s two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3′UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a “negative feedback loop” between miR-24-1 and menin protein, that mimics the second hit of Knudson’s hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the “two-hit dogma”. The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers
    corecore